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We present a unified treatment of the periodic histospline projection of a function
f on a uniform partition. We consider a given real number ve [0, 1] and obtain
existence and uniqueness results for the n-degree periodic spline s determined by the
values {{3 4 5+ V¥ s(x) dx} "}, For a function f€ C7*![a, b] and a spline deter-
mined by the conditions {¥4 G+ s(x)dx= (¥ {5+ VA f(x) dx (i=0, ., N—1)
we obtain error bounds of the form

/9= O = O 175 (k=0,...m),
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1. INTRODUCTION

Let 4={x,}~, be a uniform partition of [a, b] where x,=a+ ih and
h=(b—a)/N. An n-degree spline is a function se C"~'[a, b] such that s
restricted to [x;, x,,,] is a polynomial of degree at most n. It is a periodic
n-degree spline if s*)(a)=s*(b) for-all k=0, ., n—1.

This paper is devoted to the periodic n-degree histospline projection s
determined by the condition

xi+ (v+ 1)k xi+(v+ 1)h
j s(x)dx=f f(x) dx

xi+vh Xi+ vh

for all i=0,.., N—1 where ve [0, 1] is a given and fixed real number and
f is a function with continuous and periodic derivatives through order
n+1. This problem has been considered by several authors (see
[1,2,7-12]). Using the linear dependence relationships which exist
between any n+ 1 consecutive values of the definite integrals of the spline

{farle+Dhg(x)dx}r_, and n+2 consecutive values of its kth derivative
* This work has been supported in part by the “Ministére de 'Education du Québec” and
by the Department of the National Defence of Canada.
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HISTOSPLINE PROJECTIONS 19

{s%)(x;+ uh)}1*¢ where u, ve [0, 1], we obtain existence and uniqueness
results for the spline s and prove convergence results of the form
| f®—s®)  ~O0h"T %) for all k=0, .., n

Throughout this paper we will use the following notation. The knots of
the partition are x;=a+ ih and for any ue R x,, ,=x,+uh. If g is a real
valued function defined on the interval [a, b1, we will write g, = g(a + uh),
g% is the kth derivative of g, Var(g) is the total variation of g on [a, b],
and | g|., is the uniform norm of g. ||4]|,, is the uniform matrix norm.
A =circ(ay, ..., ay) means that A4 is a (square) circulant matrix of order N
with @, ..,ay on its first row (see [3, p.66]). If p(z)= ;?zoajzj is a
polynomial of degree n and if P=circ(0, 1,0, ..,0) is of order N>2n+ 1
then p(P)=circ(ag, @,, .., 4y, 0, ..., 0). We also consider the following
function spaces: C*[a,b], the space of functions with continuous
derivatives through order %, C" [a, b], the space of functions fe C*[a, b]
such that f“a)=f“(b) for "all 1=0 .k, and %, the space of all
polynomials of degree at most k.

2. EXISTENCE AND UNIQUENESS RESULTS

The existence result is based on the linear dependence relationships that
relate the quantities s}, and [+ s(x)dx (k=0,..,n and u, ve [0, 1]).
These relationships, proved by Dubeau and Savoie [5], are

hk n+1 n

Xitj+o+]
L st =h Y chw ) [ st dx (1)

(n+1)k+l j=0 Xitj+v

for all k=0,.,n and /leZ where (n),=nl/(n—k)!, cku j)=
(—1)*V**!(j+1—u)"~* and V is the backward difference operator.
Remark 1. In (1) and subsequent expressions, if k =» we must consider

right, or left, limits when u or v is 0, or 1.
Let us define the polynomials p*(u, z) as

n

piu,z)=Y ck(u, j)z’ (2)

j=0
for all k=0, .., n. If we consider (1) for /=0, .., N—1 and if we use the
periodicity of s, we obtain
hk
(n+ 1),

where s§) = (s%), s®) ., 5%, . ) and P=circ(0, 1,0, ..., 0).

PR (0 P) s = oA P) [ Sy (3)
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The polynomials p%(u, z) and the matrices pX(u, P) were studied in
[6,4] and we recall here, without proof, their main properties that will be
used in this paper.

Lemma 1. pd(t,z)=1 and for n>1

(i) p1, z)=2pY0, z),
(i) pAu, z)=(z— 1) p°_.(u, z) for k=0, .., n,
(111) pg(ua _1)= (—-2)"En(u),

where E,(-) is the Euler polynomial of degree n.
LEMMA 2. Let P=circ(0, 1,0, ..,0) be of order N2n+1 andnz=1.

nis odd and u # }
or
nisevenandu#0andu#1,

(i) Ifue (0, 1] and

then p%u, P) is invertible and | p(u, P)~'|| . < 1/| p%(u, —1)|.

nisoddandu=13%

(i1) If N is odd and { or

nisevenandu=Qoru=1,

then
(@) pXu, z)=(z+ 1) ¢%(u, z) for k=0, ..., n where

n—1

=Y &) and  diu )= 3 (— 1Y~ lekw ),

Jj=0 1=0

(b) qg(u’ _1)2_%p2+1(u’ —1),
(c) p%u, P)= (P + 1) ¢q°%u, P) is invertible, (P + I) ' = circ(1, —1, ...,
—1,1), and || ¢%u, P)~ || , < 1/Ig5(u, —1)|.

We can now prove the following result.

THEOREM 1. Let N=n+2 and A= {x,;}}_, be a uniform partition of
[a, b] of step size h. If

nis even and v # %
ve[0,1] and { or (Case A)
nis odd andv+#0 and v # 1
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or

nisevenandv=14
N is odd and { or (Case B)
nisoddandv=0o0rv=1,

then the periodic n-degree spline s is uniquely determined by the values
{[aeveis(x) dx}N2,'. Otherwise the spline does not exist or is not uniquely

Xitv

determined.

Proof. From Lemma 2, the matrix p%, (v, P) is invertible for ve [0, 1]
if and only if we are in Case A or B. Since the inverse of a circulant matrix
is a circulant matrix and two circulant matrices commute [3], it follows
that

n+1 1
s = (——,;)—- PG PY P a0 PY [ s (4)

for all ue[0,1] and k=0,..,n. To show that (4) defines a periodic
n-degree spline, we consider the function § defined as follows:

§(x)=(i+ 1)th component of s, , , if x = x,+ uh.

The relation p%(1, P) = Pp°(0, P) implies that § is well defined and periodic
on [a, b]. From the definition of p%(u, P) we obtain

§%)(x) = (i + 1)th component of s'*) il x = x, + uh
and §* is a piecewise polynomial of degree n— k for k=0, .., n. Using the

relation p%(1, P)= Pp%(0, P), we show that §% is contlnuous and periodic
for k=0,..,n—1. ]

3. DERIVATION OF ERROR BOUNDS

We consider a given periodic function fe Cr*'[a,b] and the periodic
n-degree spline s define over a uniform partition 4= {x,}¥_, of [a, b] by
the relations

Xito+1 s(x) dx _ !'Xiﬂ-ﬂf(x) dx

Xi+v Xite

for all i=0, .., N—1 and where ve [0, 1].
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Using (3), the remainder function e = f — s satisfies the equation

p2+1(0, P) eiiklu=p2+l(v9 P)fiikl-u

(n+1) 1
_——hk—kﬂp’é(u,l’)f Savorwdw (5)
0
for k=0, .., n. Each line of the right-hand side of the system (5) is of the

form

n+1 (n+1) n
Lo g)= ¥ ) gl - ¥ &

= j=
where g=T,f with T, the shift operator defined by T,f(x)=f(x+h).
Since L%(u, v;-) is a linear functional that vanishes for all pe 2, it follows
from the Peano Kernel Theorem that

u .])J‘ gj+v+wdw’

b
L, v )= Kiw v;1) g V(1) dt (6)
for all ge C;*'[a, b] where
1
KX(u, v; 1) == Lk (u, v (x—1))

and L% (u,v; (x—1t)" ) means that the functional L(u, v; ) is applied to
(x—1)" considered as a function of x.

Using the shift operator and the change of variable t=a+ 6h, (6)
becomes

n+2
Kt 03 Tof )= = [ R, 0;0) £ D, + Oh) db,
0

where

n+1

- 1
Kﬁ(u’ U’O) ( k)'[ Z Cn+1(v,])(]+u_9)n k

—(n+1) En: c‘,ﬁ(u,j)'[l(j+v+w—9)'1r dw].

j=0

We can now write (5) as
n+2 __
PR aa(o, Py el = [T Reu,v:0) £ o M

and prove the following results.
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THEOREM 2 (Case A). Let N>n+2, 4= {x,;})_, be a uniform partition
of [a, b] of step size h, and f€ C;*'[a,b]. If

nis even and v # 4
ve{0,1] and
nisoddandv+#0andv #1,

then there exist constants C*(v), independent of the partition, such that
£ =5 0 < Cho)h™ R e

Moreover,

1 n+2
Ck —  su K*(u, v; 0)| 46,
0= g, 2, (RO

where E,(-) is the Euler polynomial of degree n.
Proof. From (7) it follows that

n+2
e oo AN Dl Py i (o, P) "Ml L |Kix(u, v; 0)| d6

for all ue [0, 1]. The result follows from the relation

le®l, = sup e, 1w (8)
ue[0,1]

and Lemmas 1 and 2. ||
THEOREM 3 (Case B). Let N>n+2, 4= {x,;}~ , be a uniform partition

of [a, b] of step size h, fe Cr*'[a, b], and "+ be of bounded variation.
If

nisevenandv=1}
N is odd and
nisoddandv=0orv=1,

then there exist constants C*(v), independent of the partition, such that
If© = 5B o < Ch(oy A" LI D) o + Var(f "+ 1) ],

Moreover,

Cf‘, ————  —  5u |K¥(u, v; 8)] d6.
(v)= 2"+2|En+2(v)!ue[0pl]'[ (s 0; 0)]
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Proof. From Lemma?2, we have pd, (v, P)=(P+1)q°, (v, P). It
follows from (7) that

n+2 _
(1+P)e£,"iu=h"*“kc12+1(v,P)*‘f Ky(u, v;0) fGrg) db
0

and

1+ Pyel) Nl

n+2
SHEE LD gl 00 P [ IR, 0;0)] b,
0
For N odd I+ P is invertible and we have
(I-P)el),

n+2 _
=g P [ RE G v 00+ P) (= P) £ dB
0

since circulant matrices commute. But since (7+ P)~'=4circ(1, —1, ...,
—1,1)and (I+ P)"'(I-P)=circ(0, —1, 1, .., —1, 1), then

I+ P)""(I—=P) fGF ) o < Var(f" D)
and we obtain

I(T—P) el Nl <A™ 17" Var(f"* D)l g5, (v, P) '

n+2
x| " |R¥(u, v; 8)| dO.
0

The result follows from (8), the identity

et =3+ P) el +3(I-P)ef),, ®)

and Lemmas 1 and 2. |

Finally, in Case B there exist values of k£ and u for which the bounds of
[ £, ~s%) |l are independent of the variation of f"* ! as in Case A.
Consider Case B and assume that

n—kisoddand u=1

n—k>=1land {or
n—kisevenandu=0oru=1,
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then it can be shown (see [5, Corollary 8]) that the n-degree spline satisfies

hk n n—1 X4 j+v+1

S 0, )5 =k Y b ) [ s(x) dx

(n+1)k+lj 4] i=0 Xitj+e

Using the periodicity of s, we obtain

hk
(n+1)‘—q2+1(v, P)s®). =gk (u, P)J SAtviwdW (10)
k+1

which is nothing but (3) where we have cancelled the factor 7+ P on both
sides.
In this case, following Theorem 2, we have the following result.

THEOREM 4. Let N>n+2, 4= {x;}_, be a uniform partition of [a, b]
of step size h, and fe Cy*'[a, b]. If

nis even and v =134
Nis odd and

nisoddandv=0o0rv=1

and if

n—kisoddandu=1
n—k=1and

n—kisevenandu=0oru=1,

then there exist constants C’ﬁ(u, v), independent of the partition, such that
LfE =5 o S Chlu, v) A5 f0 D)

Moreover,

Ch(u, v)= |RY(u, v; 0)| b,

2"“IE +2(v )lj
where

. 1
e PR Tt

DS d:(u,j)j' (+v+w—0)y, do].

j=0
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